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1.10 Position Vector of a Particle: Velocity and Acceleration 33

the speed albernatwely as

_ds _ . As_ . [(A%)' +(Ay)’ +(A)")"
gy At e

whxch reduces to th expression on the right of Equation 1.10.5.

auonwuha,wehave

dv _d°r
=—= 1.10.
A A i
In rectangular components,
a=ii+jij+ki (1.108)

Thus, acceleration is a vector quantity whose components, in rectangular coordinates, are
the second derivatives of the positional coordinates of a moving particle.

EXAMPLE 1.10.1

Projectile Motion
Let us examine the motion represented by the equation

2
r(t)=ibt+j[ct—%)+k0

This represents motion in the xy plane, because the z component is constant and equal
to zero. The velocity v is obtained by differentiating with respect to ¢, namely,

Ay =ds
v-g—lb+1(c—gt)

The acceleration, likewise, is given by

dv

dt

Thus, a is in the negative y direction and has the constant magnitude g. The path of
motion is a parabola, as shown in Figure 1.10.3. The speed v varies with ¢ according to
the equation

2]1!2

o=[b*+(c-gb)
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Figure 1.10.3 Position,
velocity, and acceleration

vectors of a particle

(projectile) moving in a

parabolic path. 0

EXAMPLE 1.10.2

Circular Motion
Suppose the position vector of a particle is given by
r=1b sin ot + jb cos ot

where @ is a constant.
Let us analyze the motion. The distance from the origin remains constant:

Irl=r=®"sin® ot +b* cos’ wt) > =b
So the path is a circle of radius b centered at the origin. Differentiating r, we find the
velocity vector

v= % =iba coswt - jbw sin wt

The particle traverses its path with constant speed:
v=|v]= b cos® ot +b*af sin® wt) 2 =bw
The acceleration is

dv

a=—=-ibo’sinwt - jbo’ coswt

In this case the acceleration is perpendicular to the velocity, because the dot product of
v and a vanishes: :

v a=(bwcos wt)(—-ba sin ) + (-bwsin a)t)(—!:v(o2 cos wt) =0
Comparing the two expressions for a and r, we see that we can write

a=-0'r
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Figure 1.10.4 A particle
moving in a circular path
with constant speed.

so a and r are oppositely directed; that is, a always points toward the center of the cir-

cular path (Fig. 1.10.4).

EXAMPLE 1.10.3

Rolling Wheel
Let us consider the following position vector of a particle P

r=r;+r;
in which
r =ibwt +jb
1y =ib sin @t +jb cos wt

Now r, by itself represents a point moving along the line y = b at constant velocity,
provided @ is constant; namely, ' :

v, =—t=ibw

The second part, r,, is just the position vector for circular motion, as discussed in
Example 1.10.2. Hence, the vector sum r, + r, represents a point that describes a circle
of radius b about a moving center. This is precisely what occurs for a particle on the rim
of a rolling wheel, r; being the position vector of the center of the wheel and r, being
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PNy
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Figure 1,10.5 The \/

cycloidal path of a particle 0 =
on a rolling wheel.

Figure 1.10.6 Velocity vectors for various
points on a rolling wheel.

the position vector of the particle P relative to the moving center. The actual path is a
cycloid, as shown in Figure 1.10.5. The velocity of P is

© v=v;+vy=i(bw+bacos ot) - jbwsin wt

In particular, for @t =0, 27, 47, . . ., we find that v=i2bw, which is just twice the veloc-
ity of the center C. At these pomts the particle is at the uppermost part of its path.
Furthermore, for @t =, 3, 57, . . ., we obtain v =0. At these points the particle is at
its lowest point and is instantaneously in contact with the ground. See Figure 1.10.6.

-9
141| Velocity and Acceleration
in Plane Polar Coordinates

It is often convenient to employ polar coordinates r, 8 to express the position of a parti-
cle moving in a plane. Vectorially, the position of the particle can be written as the prod-
uct of the radial distance r by a unit radial vector e,:

r=re, (L1L1)
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EXAMPLE 1.11.1 Y o
A honeybee hones in on its hive in a spiral path in such a way that the radial distance
decreases at a constant rate, r =b — ct, while the angular speed increases at a constant

rate, 6 =kt. Find the speedas a function of time.
e

Soiufioh:
Wehave # =~c and # = 0. Thus, from Equation 1.11.7,
v=—ce,+ (b —ct)kte,

v =[c* + (b - ct)’ k)2
which is valid for t < b/c. Note that v =¢ both fort =0, r=b and for t = b/lc, r=0.

EXAMPLE 1.11.2
On a horizontal turntable that is rotating at constant angular speed, a bug is crawling
outward on a radial line such that its distance from the center increases quadratically
with time: r=bt*, 6= wt, where b and ware constants. Find the acceleration of the bug.

Solution: .
We have # =2bt, ¥+ =2b, 6 =@, 6 =0. Substituting into Equation 1.11.9, we find
a=¢,(2b - bt*of) + ¢g[0 + 2(2bt) )]

=b(2 - Fal)e, + dbote,

Note that the radial component of the acceleration becomes negative for large ¢ in this
example, although the radius is always increasing monotonically with time. |
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1.12 Velocity and Acceleration in Cylindrical and Spherical Coordinates . 43

Thus, in this case both velocity and acceleration are constant in magnitude, but they vary
in direction because both e, and e, change with time as the bead moves.

A wheel of radius b is placed in a gimbal mount and is made to rotate as follows. The

wheel spins with constant angular speed @, about its own axis, which in turn rotates with
constant angular speed @, about a vertical axis in such a way that the axis of the wheel
stays in a horizontal plane and the center of the wheel is motionless. Use spherical coor-
dinates to find the acceleration of any point on the rim of the wheel. In particular, find
the acceleration of the highest point on the wheel.

Solution:

We can use the fact that spherical coordinates can be chosen such that r=b, 6= axt,
and ¢ = @yt (Fig. 1.12.3). Thenwe have f = =0,60 =0, 6 =0, ¢=w,, $=0.
Equation 1.12.14 gives directly

a = (-baw; sin’ 6 - bay)e, - boj sinBcosb e, +2bw,m, cosfe,
The point at the top has coordinate 6 = 0, so at that point

a =-boje, +2bwwye,

The first term on the right is the centripetal acceleration, and the last term is a trans-
verse acceleration normal to the plane of the wheel.

Figure 1.12.3 A rotating wheel on a rotating mount.

&
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Problems

L1

1.2

1.3

14

1.5

1.6

1.7

1.8

1.9
110

111
112

CiventhetwvvectorsA=i+jandB=j+|:,ﬁndthefollowing:

(a) A+Band |A +B|

(b) 3A- 2B

(c)A-B

(d) AxB and |A x B|

GiventheﬂlreevectorsA=2i+j,B=i+k,andC=4j, find the following;:

@ A-(B+C)and(A+B)-C

®)A-(BxC)and (AxB)-C

(¢) AX(BxC)and (AxB)xC

Find the angle between the vectors A =ai + 2aj and B =ai + 24j + 3ak. (Note: These two
vectors define a face diagonal and a body diagonal of a rectangular block of sides a, 24,
and 3a.)

Consider a cube whose edges are each of unit length. One corner coincides with the origin
of an xyz Cartesian coordinate system. Three of the cube’s edges extend from the
origin along the positive direction of each coordinate axis. Find the vector that begins at the
origin and extends

(a) along a major diagonal of the cube;

(b) along the diagonal of the lower face of the cube.

(¢) Calling these vectors A and B, find C = A x B.

(d) Find the angle between A and B.

Assume that two vectors A and B are known. Let C be an unknown vector such that
A . C=uis a known quantity and A X C = B. Find C in terms of A, B, u, and the
magnitude of A.

Given the time-varying vector
A=iat+jBe + kys®

}hm:rz @, B, and y are constants, find the first and second time derivatives dA/dt and
Aldt”,

For what value (or values) of ¢ is the vector A = ig + 3j + k perpendicular to the vector B =
iq - qj + 2kP

Give an algebraic proof and a geometric proof of the following relations:

|A+B|<|A| +|B|
|A-B|<|A||B]

PrwethevectoridentityAx(BxC):B(A-C)-—C(A-B). o

Two vectors A and B represent concurrent sides of a parallelogram. Show that the area of
the parallelogram is equal to |[Ax B]|.

Show that A - (B x C) is not equal to B - (A x C).

Three vectors A, B, and C represent three concurrent edges of a parallelepiped. Show that
the volume of the parallelepiped is equal to | A - (B x C)|.

Verify the transformation matrix for a rotation about the z-axis through an angle ¢ followed
by a rotation about the y'-axis through an angle 6, as given in Example 1.8.2.

o
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115

1.16 .

1.18

L.19

1.20
1.21

1.22

Problems 45

Express the vector 2 + 3j - k in the primed triad 'K’ in which the x"y’-axes are rotated
about the z-axis (which coincides with the z"-axis) through an angle of 30°.

Consider two Cartesian coordinate systems xyz and 2’ y’ ' that initially coincide. The
%’ y’ 2’ undergoes three successive counterclockwise 45° rotations about the following
axes: first, about the fixed z-axis; second, about its own x’-axis (which has now been
rotated); finally, about its own z’-axis (which has also been rotated). Find the components
of a unit vector X in the xyz coordinate system that points along the direction of the x’-axis
in the rotated =’ y’ 2’ system. (Hint: It would be useful to find three transformation matri-
ces that depict each of the above rotations. The resulting transformation matrix is simply
their product.)

A racing car moves on a circle of constant radius b. If the speed of the car varies with time
t according to the equation v = ct, where ¢ is a positive constant, show that the angle
between the velocity vector and the acceleration vector is 45° at time ¢ = /b/c. (Hint: At
this time the tangential and normal components of the acceleration are equal in magnitude.)
A small ball is fastened to a long rubber band and twirled around in such a way that the ball
moves in an elliptical path given by the equation

r(t) = ib cos wt + j2b sin wt

where b and ware constants. Find the speed of the ball as a function of . In particular, find
vatt=0and at = 7/2, at which times the ball is, respectively, at its minimum and max-
imum distances from the origin.

A buzzing fly moves in a helical path given by the equation
r(t) =ib sinwt + jb cos ot + kct®

Show that the magnitude of the acceleration of the fly is constant, provided b, @, and ¢ are
constant,

A bee goes out from its hive in a spiral path given in plane polar coordinates by

r=be" O=ct
where b, k, and ¢ are positive constants. Show that the angle between the velocity vector
and the acceleration vector remains constant as the bee moves outward. (Hint: Find v - a/va.)
Work Problem 1.18 using cylindrical coordinates where R=b, ¢ = wt, and z = ct’.
The position of a particle as a function of time is given by

() =i(l —e™) + je*
where k is a positive constant. Find the velocity and acceleration of the particle. Sketch its
trajectory.
An ant crawls on the surface of a ball of radius b in such a manner that the ant's motion is *

given in spherical coordinates by the equations
n 1
" = f=— -
r=b ¢ =0t 3 [1+ 4cos(4mt)]

Find the speed of the ant as a function of the time ¢. What sort of path s represented by
the above equations?
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